Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Cancer Gene Ther ; 31(3): 454-463, 2024 Mar.
Article En | MEDLINE | ID: mdl-38135697

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.


Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , Signal Transduction , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tetraspanins/genetics , Tetraspanins/metabolism
2.
Front Biosci (Landmark Ed) ; 28(9): 212, 2023 09 24.
Article En | MEDLINE | ID: mdl-37796690

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly lethal tumor type, but studies on the ESCC tumor microenvironment are limited. We found that cystatin SN (CST1) plays an important role in the ESCC tumor microenvironment. CST1 has been reported to act as an oncogene in multiple human cancers, but its clinical significance and underlying mechanism in ESCC remain elusive. METHODS: We performed ESCC gene expression profiling with data from RNA-sequencing and public databases and found CST1 upregulation in ESCC. Then, we assessed CST1 expression in ESCC by RT‒qPCR and Western blot analysis. In addition, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to estimate the expression of CST1 in ESCC tissue and serum. Moreover, further functional experiments were conducted to verify that the gain and loss of CST1 in ESCC cell lines significantly influenced the proliferation and metastasis of ESCC. Mass spectrometry, coimmunoprecipitation, and gelatin zymography experiments were used to validate the interaction between CST1 and matrix metalloproteinase 2 (MMP2) and the mechanism of CST1 influence on metastasis in ESCC. RESULTS: Here, we found that CST1 expression was significantly elevated in ESCC tissues and serum. Moreover, compared with patients with low CST1 expression, patients with high CST1 expression had a worse prognosis. Overall survival (OS) and disease-free survival (DFS) were significantly unfavorable in the high CST1 expression subgroup. Likewise, the CST1 level was significantly increased in ESCC serum compared with healthy control serum, indicating that CST1 may be a potential serum biomarker for diagnosis, with an area under the curve (AUC) = 0.9702 and p < 0.0001 by receiver operating curve (ROC) analysis. Furthermore, upregulated CST1 can promote the motility and metastatic capacity of ESCC in vitro and in vivo by influencing epithelial mesenchymal transition (EMT) and interacting with MMP2 in the tumor microenvironment (TME). CONCLUSIONS: Collectively, the results of this study indicated that high CST1 expression mediated by SPI1 in ESCC may serve as a potentially prognostic and diagnostic predictor and as an oncogene to promote motility and metastatic capacity of ESCC by influencing EMT and interacting with MMP2 in the TME.


Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Up-Regulation , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition , Tumor Microenvironment/genetics
3.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Article En | MEDLINE | ID: mdl-37534761

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Nasopharyngeal Neoplasms , Animals , Mice , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Mice, Nude , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Luciferases , Cell Movement , Neoplasm Invasiveness , Neoplasm Metastasis
4.
Cancer Control ; 30: 10732748231188261, 2023.
Article En | MEDLINE | ID: mdl-37523422

OBJECTIVES: This retrospective cohort study investigated the association of socioeconomic status with survival outcomes among patients with nasopharyngeal carcinoma in an endemic area of China. METHODS: The primary endpoint was overall survival. Survival outcomes were estimated by the Kaplan-Meier method and compared by the log-rank test, and the multivariate Cox proportional hazards model was used to estimate hazard ratios, 95% CIs, and independent prognostic factors. RESULTS: A total of 11 069 adult patients with NPC were enrolled and included in the analysis. Kaplan-Meier survival analysis revealed that overall survival was significantly different among socioeconomic status. Compared with high socioeconomic status patients, low socioeconomic status patients (HR, 1.190; 95% CI, 1.063-1.333) and medium socioeconomic status patients (HR, 1.111; 95% CI, 1.006-1.226) were associated with increased hazard ratio (HR) of overall survival. CONCLUSION: This analysis highlights patients with nasopharyngeal carcinoma who had high socioeconomic status had better overall survival compared with those who had low and medium socioeconomic status.


Nasopharyngeal Neoplasms , Adult , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Retrospective Studies , Socioeconomic Disparities in Health , Proportional Hazards Models , Prognosis
5.
Zhongguo Zhong Yao Za Zhi ; 48(3): 725-735, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36872236

This study aimed to parallelly investigate the cardioprotective activity of Cinnamomi Ramulus formula granules(CRFG) and Cinnamomi Cortex formula granules(CCFG) against acute myocardial ischemia/reperfusion injury(MI/RI) and the underlying mechanism based on the efficacy of "warming and coordinating the heart Yang". Ninety male SD rats were randomly divided into a sham group, a model group, CRFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, and CCFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, with 15 rats in each group. The sham group and the model group were given equal volumes of normal saline by gavage. Before modeling, the drug was given by gavage once a day for 7 consecutive days. One hour after the last administration, the MI/RI rat model was established by ligating the left anterior descending artery(LAD) for 30 min ischemia followed by 2 h reperfusion except the sham group. The sham group underwent the same procedures without LAD ligation. Heart function, cardiac infarct size, cardiac patho-logy, cardiomyocyte apoptosis, cardiac injury enzymes, and inflammatory cytokines were determined to assess the protective effects of CRFG and CCFG against MI/RI. The gene expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3(NLRP3) inflammasome, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate specific proteinase-1(caspase-1), Gasdermin-D(GSDMD), interleukin-1ß(IL-1ß), and interleukin-18(IL-18) were determined by real-time quantitative polymerase chain reaction(RT-PCR). The protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD were determined by Western blot. The results showed that both CRFG and CCFG pretreatments significantly improved cardiac function, decreased the cardiac infarct size, inhibited cardiomyocyte apoptosis, and reduced the content of lactic dehydrogenase(LDH), creatine kinase MB isoenzyme(CK-MB), aspartate transaminase(AST), and cardiac troponin Ⅰ(cTnⅠ). In addition, CRFG and CCFG pretreatments significantly decreased the levels of IL-1ß, IL-6, and tumor necrosis factor-α(TNF-α) in serum. RT-PCR results showed that CRFG and CCFG pretreatment down-regulated the mRNA expression levels of NLRP3, caspase-1, ASC, and downstream pyroptosis-related effector substances including GSDMD, IL-18, and IL-1ß in cardiac tissues. Western blot revealed that CRFG and CCFG pretreatments significantly decreased the protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD in cardiac tissues. In conclusion, CRFG and CCFG pretreatments have obvious cardioprotective effects on MI/RI in rats, and the under-lying mechanism may be related to the inhibition of NLRP3/caspase-1/GSDMD signaling pathway to reduce the cardiac inflammatory response.


Myocardial Infarction , Myocardial Reperfusion Injury , Male , Animals , Rats , Rats, Sprague-Dawley , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha , Caspase 1
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166696, 2023 06.
Article En | MEDLINE | ID: mdl-36963524

BACKGROUND: Metastasis is one of the main obstacles impeding the survival of nasopharyngeal carcinoma (NPC) patients, with the molecular mechanism underlying NPC metastasis still unclear. RESULTS: In this study, Cystatin A (CSTA) was found downregulated in NPC tissues with metastasis compared with those without metastasis. Shorter overall survival and distant metastasis-free survival were found in NPC patients with lower CSTA expression. Using functional assays, we found that CSTA prevented both the in vitro motility of NPC cells and their ability to metastasize in vivo. Transcriptome sequencing and western blot analysis revealed that CSTA inhibited the phosphorylation of AKT. Moreover, activating AKT using AKT agonist SG79 rescued the motility of CSTA-overexpressing NPC cells, whereas, treatment with AKT inhibitor MK2206 inhibited the motility of CSTA-knockdown NPC cells. Mechanically, immunoprecipitation coupled mass spectrometry found that CSTA interacted with the N6-adenosine-methyltransferase subunit METTL3 and promoted its ubiquitin-proteasome-mediated degradation following the upregulation of NKX3-1 and LHPP, which are negative regulators of AKT. Furthermore, knock-down of NKX3-1 and LHPP enhanced the motility of CSTA-overexpressing NPC cells. CONCLUSIONS: The inhibitory effect of CSTA upon NPC metastasis mainly depended on suppressing AKT signaling by the upregulation of NKX3-1 and LHPP expression resulting from the binding between CSTA and METLL3. Our study suggests that the CSTA-METLL3-NKX3-1/LHPP-AKT axis could be of therapeutic value for inhibiting NPC metastasis.


Carcinoma , Nasopharyngeal Neoplasms , Humans , Carcinoma/pathology , Cystatin A , Epithelial-Mesenchymal Transition , Methyltransferases , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism
7.
Cancer Gene Ther ; 30(2): 375-387, 2023 02.
Article En | MEDLINE | ID: mdl-36357564

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Signal Transduction , Cytoskeleton/genetics , Cytoskeleton/metabolism , Cytoskeleton/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
8.
Med Phys ; 49(10): 6728-6738, 2022 Oct.
Article En | MEDLINE | ID: mdl-35959736

PURPOSE: Ultra-high dose rate FLASH irradiation (FLASH-IR) has been shown to cause less normal tissue damage compared with conventional irradiation (CONV-IR), this is known as the "FLASH effect." It has attracted immense research interest because its underlying mechanism is scarcely known. The purpose of this study was to determine whether FLASH-IR and CONV-IR induce differential inflammatory cytokine expression using a modified clinical linac. MATERIALS AND METHODS: An Elekta Synergy linac was used to deliver 6 MeV CONV-IR and modified to deliver FLASH-IR. Female FvB mice were randomly assigned to three different groups: a non-irradiated control, CONV-IR, or FLASH-IR. The FLASH-IR beam was produced by single pulses repeated manually with a 20-s interval (Strategy 1), or single-trigger multiple pulses with a 10 ms interval (Strategy 2). Mice were immobilized in the prone position in a custom-designed applicator with Gafchromic films positioned under the body. The prescribed doses for the mice were 6 to 18 Gy and verified using Gafchromic films. Cytokine expression of three pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], interleukin-6 [IL-6]) and one anti-inflammatory cytokine (IL-10) in serum samples and skin tissue were examined within 1 month post-IR. RESULTS: The modified linac delivered radiation at an intra-pulse dose rate of around 1 × 106 Gy/s and a dose per pulse over 2 Gy at a source-to-surface distance (SSD) of 13 to 15 cm. The achieved dose coverage was 90%-105% of the maximum dose within -20 to 20 mm in the X direction and 95% within -30 to 30 mm in the Y direction. The absolute deviations between the prescribed dose and the actual dose were 2.21%, 6.04%, 2.09%, and 2.73% for 6, 9, 12, and 15 Gy as measured by EBT3 films, respectively; and 4.00%, 4.49%, and 2.30% for 10, 14, and 18 Gy as measured by the EBT XD films, respectively. The reductions in the CONV-IR versus the FLASH-IR group were 4.89%, 10.28%, -7.8%, and -22.17% for TNF-α, IFN-γ, IL-6, and IL-10 in the serum on D6, respectively; 37.26%, 67.16%, 56.68%, and -18.95% in the serum on D31, respectively; and 62.67%, 35.65%, 37.75%, and -12.20% for TNF-α, IFN-γ, IL-6, and IL-10 in the skin tissue, respectively. CONCLUSIONS: Ultra-high dose rate electron FLASH caused lower pro-inflammatory cytokine levels in serum and skin tissue which might mediate differential tissue damage between FLASH-IR and CONV-IR.


Interleukin-10 , Tumor Necrosis Factor-alpha , Animals , Electrons , Female , Interferon-gamma , Interleukin-6 , Mice
9.
Aging (Albany NY) ; 13(17): 21758-21777, 2021 09 14.
Article En | MEDLINE | ID: mdl-34520390

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that commonly occurs worldwide. Usually, Asia, especially China, has a high incidence of esophageal cancer. ESCC often has a poor outcome because of a late diagnosis and lack of effective treatments. To build foundations for the early diagnosis and treatment of ESCC, we used the gene expression datasets GSE20347 and GSE17351 from the GEO database and a private dataset to uncover differentially expressed genes (DEGs) and key genes in ESCC. Notably, we found that replication factor C subunit 4 (RFC4) and guanine monophosphate synthase (GMPS) were upregulated but have been rarely studied in ESCC. In particular, to the best of our knowledge, our study is the first to explore GMPS and ESCC. Furthermore, we found that high levels of RFC4 and GMPS expression may result from an increase in DNA copy number alterations. Furthermore, RFC4 and GMPS were both upregulated in the early stage and early nodal metastases of esophageal carcinoma. The expression of RFC4 was strongly correlated with GMPS. In addition, we explored the relationship between RFC4 and GMPS expression and tumor-infiltrating immune cells (TILs) in esophageal carcinoma. The results showed that the levels of RFC4 and GMPS increased with a decrease in some tumor-infiltrating cells. Upregulated RFC4 and GMPS with high TILs indicate a worse prognosis. In summary, our study shows that RFC4 and GMPS have potential as biomarkers for the early diagnosis of ESCC and may played a crucial role in the process of tumor immunity in ESCC.


Computational Biology/methods , DNA Copy Number Variations , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Guanosine Monophosphate/genetics , Replication Protein C/genetics , Thionucleotides/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Datasets as Topic , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Guanosine Monophosphate/metabolism , Humans , Male , Middle Aged , Prognosis , ROC Curve , Replication Protein C/metabolism , Thionucleotides/metabolism , Up-Regulation
11.
Cancer Lett ; 498: 165-177, 2021 02 01.
Article En | MEDLINE | ID: mdl-33152401

Nasopharyngeal carcinoma (NPC) originates in the nasopharyngeal epithelium and has the highest metastatic rate among head and neck cancers. Distant metastasis is the main reason for treatment failure with the underlying mechanisms remaining unclear. By comparing the expression profiling of NPCs versus non-cancerous nasopharyngeal tissues, we found LACTB was highly expressed in the tumor tissues. We found that elevated expression of the LACTB protein in primary NPCs correlated with poorer patient survival. LACTB is known to be a serine protease and a ubiquitous mitochondrial protein localized in the intermembrane space. Its role in tumor biology remains controversial. We found that the different methylation pattern of LACTB promoter led to its differential expression in NPC cells. Overexpressing LACTB in NPC cells promoted their motility in vitro and metastasis in vivo. While knocking down LACTB reduced the metastasis capability of NPC cells. However, LACTB did not influence cellular proliferation. We further found the role of LACTB in promoting NPC metastasis depended on the activation of ERBB3/EGFR-ERK signaling, which in turn, affected the stability and the following acetylation of histone H3. These findings may shed light on unveiling the mechanisms of NPC metastasis.


MAP Kinase Signaling System/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Neoplasm Metastasis/genetics , Receptor, ErbB-3/genetics , Signal Transduction/genetics , beta-Lactamases/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , ErbB Receptors/genetics , Female , Humans , Mice , Mice, Nude , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Neoplasm Metastasis/pathology , Promoter Regions, Genetic/genetics
12.
BMJ Open ; 10(11): e037150, 2020 11 10.
Article En | MEDLINE | ID: mdl-33172940

OBJECTIVES: Geographical disparities have been identified as a specific barrier to cancer screening and a cause of worse outcomes for patients with cancer. In the present study, our aim was to assess the influence of geographical disparities on the survival outcomes of patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). DESIGN: Cohort study. SETTING: Guangzhou, China. PARTICIPANTS: A total of 1002 adult patients with NPC (724 males and 278 females) who were classified by area of residence (rural or urban) received IMRT from 1 January 2010 to 31 December 2014, at Sun Yat-sen University Cancer Center. Following propensity score matching (PSM), 812 patients remained in the analysis. MAIN OUTCOME MEASURES: We used PSM to reduce the bias of variables associated with treatment effects and outcome prediction. Survival outcomes were estimated using the Kaplan-Meier method and compared by the log-rank test. Multivariate Cox regression was used to identify independent prognostic factors. RESULTS: In the matched cohort, 812 patients remained in the analysis. Kaplan-Meier survival analysis revealed that the rural group was significantly associated with worse overall survival (OS, p<0.001), disease-free survival (DFS, p<0.001), locoregional relapse-free survival (LRRFS, p=0.003) and distant metastasis-free survival (DMFS, p<0.001). Multivariate Cox regression showed worse OS (HR=3.126; 95% CI 1.902 to 5.138; p<0.001), DFS (HR=2.579; 95% CI 1.815 to 3.665; p<0.001), LRRFS (HR=2.742; 95% CI 1.359 to 5.533; p=0.005) and DMFS (HR=2.461; 95% CI 1.574 to 3.850; p<0.001) for patients residing in rural areas. CONCLUSIONS: The survival outcomes of patients with NPC who received the same standardised treatment were significantly better in urban regions than in rural regions. By analysing the geographic disparities in outcomes for NPC, we can guide the formulation of healthcare policies.


Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Adult , Carcinoma/radiotherapy , China/epidemiology , Cohort Studies , Female , Humans , Male , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Neoplasm Recurrence, Local , Prognosis , Retrospective Studies
13.
Clin Ther ; 42(11): 2196-2212, 2020 11.
Article En | MEDLINE | ID: mdl-33158581

PURPOSE: Irbesartan is widely used clinically in the treatment of diabetic nephropathy (DN). It is believed that piperazine ferulate (PF) combined with irbesartan could result in an improved efficacy in the treatment of DN. We present the latest meta-analysis that details the combination of PF and irbesartan therapy. METHODS: Before January 31, 2020, we searched various electronic databases for appropriate articles. Our search was not restricted by keyword or language. We then filtered all articles using certain criteria and assessed the quality of the qualified studies. FINDINGS: The meta-analysis included 12 trials that involved 1300 patients (650 in the experimental group and 650 in the control group). The ages of the patients ranged from 30 to 79 years. Compared with irbesartan alone, the total effective rate of PF combined with irbesartan was significantly higher (odds ratio [OR] = 4.95; 95% CI, 3.11-7.58; P < 0.0001). The blood glucose level was controlled by significantly decreasing the fasting plasma glucose level (mean difference [MD] = -1.40; 95% CI, -2.70 to -0.11; P = 0.03) and 2-h plasma glucose level (MD = -1.65; 95% CI, -2.49 to -0.82; P < 0.0001). The combination therapy significantly decreased the levels of serum creatinine (MD = -10.24; 95% CI, -15.25 to -5.23; P < 0.0001), 24-h urinary protein (MD = -0.07; 95% CI, -0.09 to -0.05; P < 0.0001), urinary albumin excretion rate (MD = -22.52; 95% CI, -30.20 to -14.84; P < 0.0001), urinary ß2-microglobulin (MD = -0.15; 95% CI, -0.17 to -0.13; P < 0.0001), and blood urea nitrogen (MD = -1.54; 95% CI, -2.36 to -0.72; P = 0.0002), which was beneficial for improving and protecting renal function. The renal microcirculation was improved by significantly decreasing the whole blood viscosity low shear (MD = -1.41; 95% CI, -1.84 to -0.99; P < 0.0001), whole blood viscosity high shear (MD = -0.54; 95% CI, -0.63 to -0.45; P < 0.0001), whole blood viscosity (MD = -1.31; 95% CI, -1.79 to -0.83; P < 0.0001), whole blood reduction viscosity (MD = -1.42; 95% CI, -1.79 to -1.06; P < 0.0001), platelet aggregation rate (MD = -0.42; 95% CI, -0.50 to -0.35; P < 0.0001), plasma viscosity (MD = -13.02; 95% CI, -15.47 to -10.56; P < 0.0001), and fibrinogen content (MD = -0.25; 95% CI, -0.42 to -0.09; P = 0.003). IMPLICATIONS: PF combined with irbesartan could improve the efficiency in the treatment of DN. However, these results should be handled carefully. These findings should be verified by several rigorous randomized controlled trials.


Diabetic Nephropathies/drug therapy , Irbesartan/therapeutic use , Piperazine/therapeutic use , Adult , Aged , Blood Urea Nitrogen , Creatinine/blood , Humans , Middle Aged
14.
J Cell Mol Med ; 24(17): 9999-10012, 2020 09.
Article En | MEDLINE | ID: mdl-32678482

The aldo-keto reductases family 1 member C2 (AKR1C2) has critical roles in the tumorigenesis and progression of malignant tumours. However, it was also discovered to have ambiguous functions in multiple cancers and till present, its clinical significance and molecular mechanism in oesophageal squamous cell carcinoma (ESCC) has been unclear. The aim of this study was to explore the role of AKR1C2 in the tumorigenesis of ESCC. Here, we showed that AKR1C2 expression was found to be up-regulated in ESCC tissues and was significantly associated with pathological stage, lymph node metastasis and worse outcomes. Functional assays demonstrated that an ectopic expression of AKR1C2 in ESCC cells resulted in increased proliferation, migration and cisplatin resistance, while knockdown led to inversing effects. Bioinformation analyses and mechanistic studies demonstrated that AKR1C2 activated the PI3K/AKT signalling pathway, furthermore, the inhibitor of PI3K or the selective inhibitor of AKR1C2 enzyme activity could reverse the aggressiveness and showed synergistic antitumour effect when combined with cisplatin, both in vitro and in vivo. In conclusion, Our findings revealed that AKR1C2 could function as an oncogene by activating the PI3K/AKT pathway, as a novel prognostic biomarker and/or as a potential therapeutic target to ESCC.


Esophageal Squamous Cell Carcinoma/genetics , Hydroxysteroid Dehydrogenases/genetics , Oncogenes/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Up-Regulation/genetics
15.
Oncogene ; 39(30): 5307-5322, 2020 07.
Article En | MEDLINE | ID: mdl-32555330

Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.


Calcium-Binding Proteins/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Lung Neoplasms/genetics , NF-kappa B/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Nude , NF-kappa B/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Signal Transduction/genetics , Survival Analysis
16.
Biochem Biophys Res Commun ; 527(3): 770-777, 2020 06 30.
Article En | MEDLINE | ID: mdl-32446561

Nasopharyngeal carcinoma (NPC) is relatively sensitive to ionizing radiation, and radiotherapy is the main treatment modality for non-metastatic NPC. Radiation therapy generates overproduction of reactive oxygen species (ROS), which can cause DNA damage and induce apoptosis in tumors, thereby killing the malignant cells. Although dietary antioxidant supplementation reduces oxidative stress and promotes tumor progression, the effects of antioxidants on the NPC cells upon radiation have not been reported. In the present study, we showed that antioxidants (ß-Carotene, NAC, GSH) played an anti-apoptotic role in response to radiation via decreasing ROS production and inhibiting MAPK pathway in NPC cells. Based on that, we conclude that the use of supplemental antioxidants during radiotherapy should be avoided because of the possibility of tumor protection and reduced treatment efficacy.


Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , MAP Kinase Signaling System/drug effects , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Cell Line, Tumor , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Reactive Oxygen Species/metabolism
17.
Cancer Lett ; 482: 74-89, 2020 07 10.
Article En | MEDLINE | ID: mdl-32305558

Distant metastasis is the major cause of short survival in ccRCC patients. However, the development of effective therapies for metastatic ccRCC is limited. Herein, we reported that ETV4 was selected from among 150 relevant genes with in vivo evidence of promoting metastasis. In this study, we identified that ETV4 promoted ccRCC cell migration and metastasis in vitro and in vivo, and a positive correlation between ETV4 and FOSL1 expression was found in ccRCC tissues and cell lines. Further investigation suggested that ETV4 increase FOSL1 expression through direct binding with the FOSL1 promoter. Furthermore, ETV4/FOSL1 was proved as a novel upstream and downstream causal relationship in ccRCC in an AKT dependent manner. In addition, both ETV4 and FOSL1 serve as an independent, unfavorable ccRCC prognostic indicator, and the accumulation of the ETV4 and FOSL1 in ccRCC patients result in a worse survival outcome in ccRCC patients. Taken together, our results suggest that the ETV4/FOSL1 axis acts as a prognostic biomarker and ETV4 directly up-regulates FOSL1 by binding with its promoter in a PI3K-AKT dependent manner, leading to metastasis and disease progression of ccRCC.


Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-fos/genetics , Up-Regulation , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Precision Medicine , Prognosis , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Signal Transduction , Survival Analysis
18.
Mol Cancer Res ; 18(6): 903-912, 2020 06.
Article En | MEDLINE | ID: mdl-32169891

The underlying molecular mechanism driving clear cell renal cell carcinoma (ccRCC) progression is still to be explored. The significant downregulation of protein tyrosine phosphatase nonreceptor type 3 (PTPN3) expression in the tumor tissues suggested its protective role in ccRCC progression. IHC analysis of PTPN3 protein in 172 ccRCC tissue revealed that PTPN3 was an independently favorable prognostic factor for progression-free survival (P = 0.0166) and overall survival (P = 0.0343) of patients. The ccRCC cell lines SN12C, 1932, ACHN, and Caki-1 were used to evaluate, both in vitro and in vivo, the biological roles of PTPN3. We observed that overexpression of PTPN3 significantly inhibited the proliferation, migration, and invasion of ccRCC cells. In contrast, the knocking down of PTPN3 elicited opposite effects. Overexpressing PTPN3 inhibited xenograft tumor growth and lung metastasis displayed by the in vivo mice models. PTPN3 inhibited tumor cell motility by suppressing the phosphorylation of AKT, and subsequently inactivating the PI3K/AKT signaling pathway of renal cell carcinoma cells. Furthermore, the inhibition of phospho-AKTThr308 and phospho-AKTSer473 reversed PTPN3-induced silencing in tumor cell migration. Our work revealed that the overexpression of PTPN3 could suppress kidney cancer progression by negatively regulating the AKT signaling pathway, and served as a favorable prognostic factor in patients with ccRCC. Our findings provided insight that PTPN3 could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC. IMPLICATIONS: PTPN3 is an independent favorable prognostic factor for patients with ccRCC and could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC.


Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/prevention & control , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/prevention & control , Phosphatidylinositol 3-Kinases/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/secondary , Case-Control Studies , Cell Movement , Cell Proliferation , Female , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Phosphorylation , Prognosis , Protein Tyrosine Phosphatase, Non-Receptor Type 3/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Cancer Manag Res ; 11: 5557-5572, 2019.
Article En | MEDLINE | ID: mdl-31417306

Background/Aims: The tumor-suppressive functions of interferon regulatory factor 6 (IRF6) in some tumors have been preliminarily established, but its pathogenesis and underlying molecular mechanisms in breast cancer, the most common malignancy in women, remains poorly understood. Methods: Pairs of typical breast cancer cell lines (high- and low-aggressive) in addition to 27 breast cancer tissue samples and 31 non-cancerous breast tissues were used to investigate the expression level of IRF6 and Lentivirus-mediated gain-of-function studies, short hairpin RNA-mediated loss-of-function studies in vivo and in vitro were used to validate the role of IRF6 in breast cancer. Next, we performed RNA-Seq analysis to identify the molecular mechanisms of IRF6 involved in breast cancer progression. Results: Our findings showed that IRF6 was downregulated in highly invasive breast cancer cell lines but upregulated in poorly aggressive ones. Functional assays revealed that elevated IRF6 expression could suppress cell proliferation and tumorigenicity, and enhanced cellular chemotherapeutic sensitivity. To identify the molecular mechanisms involved, we performed a genome-wide and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in breast cancer cells using RNA sequencing of gene expression profiles following the overexpression of IRF6. Genome-wide and KEGG analyses showed that IRF6 might mediate the PI3K-regulatory subunit PIK3R2, which in turn modulated the PI3K/AKT pathway to control breast cancer pathogenesis. Conclusion: We provide the first evidence of the involvement of IRF6 in breast cancer pathogenesis, which was found to modulate the PI3K/AKT pathway via mediating PIK3R2; indicating that IRF6 can be targeted as a potential therapeutic treatment of breast cancer.

20.
J Exp Clin Cancer Res ; 38(1): 152, 2019 Apr 08.
Article En | MEDLINE | ID: mdl-30961661

BACKGROUND: With the rapid development of the high throughput detection techniques, tumor-related Omics data has become an important source for studying the mechanism of tumor progression including breast cancer, one of the major malignancies worldwide. A previous study has shown that the G2 and S phase-expressed-1 (GTSE1) can act as an oncogene in several human cancers. However, its functional roles in breast cancer remain elusive. METHOD: In this study, we analyzed breast cancer data downloaded from The Cancer Genome Atlas (TCGA) databases and other online database including the Oncomine, bc-GenExMiner and PROGgeneV2 database to identify the molecules contributing to the progression of breast cancer. The GTSE1 expression levels were investigated using qRT-PCR, immunoblotting and IHC. The biological function of GTSE1 in the growth, migration and invasion of breast cancer was examined in MDA-MB-231, MDA-MB-468 and MCF7 cell lines. The in vitro cell proliferative, migratory and invasive abilities were evaluated by MTS, colony formation and transwell assay, respectively. The role of GTSE1 in the growth and metastasis of breast cancer were revealed by in vivo investigation using BALB/c nude mice. RESULTS: We showed that the expression level of GTSE1 was upregulated in breast cancer specimens and cell lines, especially in triple negative breast cancer (TNBC) and p53 mutated breast cancer cell lines. Importantly, high GTSE1 expression was positively correlated with histological grade and poor survival. We demonstrated that GTSE1 could promote breast cancer cell growth by activating the AKT pathway and enhance metastasis by regulating the Epithelial-Mesenchymal transition (EMT) pathway. Furthermore, it could cause multidrug resistance in breast cancer cells. Interestingly, we found that GTSE1 could regulate the p53 function to alter the cell cycle distribution dependent on the mutation state of p53. CONCLUSION: Our results reveal that GTSE1 played a key role in the progression of breast cancer, indicating that GTSE1 could serve as a novel biomarker to aid in the assessment of the prognosis of breast cancer.


Breast Neoplasms/genetics , Breast Neoplasms/pathology , Microtubule-Associated Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Microtubule-Associated Proteins/biosynthesis , Mutation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transfection
...